Total Pageviews

Thursday, July 26, 2018

AWS Nitro Hypervisor FAQ

Q. What is the Nitro Hypervisor?

The launch of C5 instances introduced a new hypervisor for Amazon EC2, the Nitro Hypervisor. As a component of the Nitro system, the Nitro Hypervisor primarily provides CPU and memory isolation for EC2 instances. VPC networking and EBS storage resources are implemented by dedicated hardware components, Nitro Cards that are part of all current generation EC2 instance families. The Nitro Hypervisor is built on core Linux Kernel-based Virtual Machine (KVM) technology, but does not include general-purpose operating system components.

Q. How does the Nitro Hypervisor benefit customers?

The Nitro Hypervisor provides consistent performance and increased compute and memory resources for EC2 virtualized instances by removing host system software components. It allows AWS to offer larger instance sizes (like c5.18xlarge) that provide practically all of the resources from the server to customers. Previously, C3 and C4 instances each eliminated software components by moving VPC and EBS functionality to hardware designed and built by AWS. This hardware enables the Nitro Hypervisor to be very small and uninvolved in data processing tasks for networking and storage.

Q. Will all EC2 instances use the Nitro Hypervisor?

Eventually all new instance types will use the Nitro Hypervisor, but in the near term, some new instance types will use Xen depending on the requirements of the platform.

Q. Will AWS continue to invest in its Xen-based hypervisor?

Yes. As AWS expands its global cloud infrastructure, EC2’s use of its Xen-based hypervisor will also continue to grow. Xen will remain a core component of EC2 instances for the foreseeable future. AWS is a founding member of the Xen Project since its establishment as a Linux Foundation Collaborative Project and remains an active participant on its Advisory Board. As AWS expands its global cloud infrastructure, EC2’s Xen-based hypervisor also continues to grow. Therefore EC2’s investment in Xen continues to grow, not shrink

Q. How many EBS volumes and Elastic Network Interfaces (ENIs) can be attached to instances running on the Nitro Hypervisor?

Instances running on the Nitro Hypervisor support a maximum of 27 additional PCI devices for EBS volumes and VPC ENIs. Each EBS volume or VPC ENI uses a PCI device. For example, if you attach 3 additional network interfaces to an instance that uses the Nitro Hypervisor, you can attach up to 24 EBS volumes to that instance.

Q. Will the Nitro Hypervisor change the APIs used to interact with EC2 instances?

No, all the public facing APIs for interacting with EC2 instances that run using the Nitro Hypervisor will remain the same. For example, the “hypervisor” field of the DescribeInstances response, which will continue to report “xen” for all EC2 instances, even those running under the Nitro Hypervisor. This field may be removed in a future revision of the EC2 API.

Q. Which AMIs are supported on instances that use the Nitro Hypervisor?

EBS backed HVM AMIs with support for ENA networking and booting from NVMe storage can be used with instances that run under the Nitro Hypervisor. The latest Amazon Linux AMI and Windows AMIs provided by Amazon are supported, as are the latest AMI of Ubuntu, Debian, Red Hat Enterprise Linux, SUSE Enterprise Linux, CentOS, and FreeBSD.

Q. Will I notice any difference between instances using Xen hypervisor and those using the Nitro Hypervisor?

Yes. For example, instances running under the Nitro Hypervisor boot from EBS volumes using an NVMe interface. Instances running under Xen boot from an emulated IDE hard drive, and switch to the Xen paravirtualized block device drivers.

Operating systems can identify when they are running under a hypervisor. Some software assumes that EC2 instances will run under the Xen hypervisor and rely on this detection. Operating systems will detect they are running under KVM when an instance uses the Nitro Hypervisor, so the process to identify EC2 instances should be used to identify EC2 instances that run under both hypervisors.

All the features of EC2 such as Instance Metadata Service work the same way on instances running under both Xen and the Nitro Hypervisor. The majority of applications will function the same way under both Xen and the Nitro Hypervisor as long as the operating system has the needed support for ENA networking and NVMe storage.

Q. How are instance reboot and termination EC2 API requests implemented by the Nitro Hypervisor?

The Nitro Hypervisor signals the operating system running in the instance that it should shut down cleanly by industry standard ACPI methods. For Linux instances, this requires that acpid be installed and functioning correctly. If acpid is not functioning in the instance, termination events will be delayed by multiple minutes and will then execute as a hard reset or power off.

Q. How do EBS volumes behave when accessed by NVMe interfaces?

There are some important differences in how operating system NVMe drivers behave compared to Xen paravirtual (PV) block drivers.

First, the NVMe device names used by Linux based operating systems will be different than the parameters for EBS volume attachment requests and block device mapping entries such as /dev/xvda and /dev/xvdf. NVMe devices are enumerated by the operating system as /dev/nvme0n1, /dev/nvme1n1, and so on. The NVMe device names are not persistent mappings to volumes, therefore other methods like file system UUIDs or labels should be used when configuring the automatic mounting of file systems or other startup activities. When EBS volumes are accessed via the NVMe interface, the EBS volume ID is available via the controller serial number and the device name specified in EC2 API requests is provided by an NVMe vendor extension to the Identify Controller command. This enables backward compatible symbolic links to be created by a utility script. For more information see the EC2 documentation on device naming and NVMe based EBS volumes.

Second, by default the NVMe drivers included in most operating systems implement an I/O timeout. If an I/O does not complete in an implementation specific amount of time, usually tens of seconds, the driver will attempt to cancel the I/O, retry it, or return an error to the component that issued the I/O. The Xen PV block device interface does not time out I/O, which can result in processes that cannot be terminated if it is waiting for I/O. The Linux NVMe driver behavior can be modified by specifying a higher value for the timeout kernel module parameter.

Third, the NVMe interface can transfer much larger amounts of data per I/O, and in some cases may be able to support more outstanding I/O requests, compared to the Xen PV block interface. This can cause higher I/O latency if very large I/Os or a large number of I/O requests are issued to volumes designed to support throughput workloads like EBS Throughput Optimized HDD (st1) and Cold HDD (sc1) volumes. This I/O latency is normal for throughput optimized volumes in these scenarios, but may cause I/O timeouts in NVMe drivers. The I/O timeout can be adjusted in the Linux driver by specifying a larger value for the nvme_core.io_timeout kernel module parameter.


  1. Good explanation,thanks for writing,it is useful for so many developers
    AWS Online Training


  2. It was so nice article. I was really satisfied by seeing this article. google cloud online course Hyderabad

  3. It is really a great work and the way in which you are sharing the knowledge is excellent.

    amazon cloud computing in india